工业型材,铝合金型材,建筑型材厂家,工业铝合金型材,铝合金建筑型材,隔热断桥铝型材,河南奥美特铝业官网

您的位置:主页 > 建筑型材厂家 >

理化所实现NiO修饰Ni纳米颗粒可见光催化制备高级烃类

发布日期:2021-10-10 06:34   来源:未知   阅读:

  •   香港最快报码开奖结果准2020年山东滨州市47个园区分布地图及名单汇总一,作为国家在科学技术方面的最高学术机构和全国自然科学与高新技术的综合研究与发展中心,建院以来,中国科学院时刻牢记使命,与科学共进,与祖国同行,以国家富强、人民幸福为己任,人才辈出,硕果累累,为我国科技进步、经济社会发展和国家安全做出了不可替代的重要贡献。更多简介 +

      中国科学技术大学(简称“中科大”)于1958年由中国科学院创建于北京,1970年学校迁至安徽省合肥市。中科大坚持“全院办校、所系结合”的办学方针,是一所以前沿科学和高新技术为主、兼有特色管理与人文学科的研究型大学。

      中国科学院大学(简称“国科大”)始建于1978年,其前身为中国科学院研究生院,2012年更名为中国科学院大学。国科大实行“科教融合”的办学体制,与中国科学院直属研究机构在管理体制、师资队伍、培养体系、科研工作等方面共有、共治、共享、共赢,是一所以研究生教育为主的独具特色的研究型大学。

      上海科技大学(简称“上科大”),由上海市人民政府与中国科学院共同举办、共同建设,2013年经教育部正式批准。上科大秉持“服务国家发展战略,培养创新创业人才”的办学方针,实现科技与教育、科教与产业、科教与创业的融合,是一所小规模、高水平、国际化的研究型、创新型大学。

      CO加氢高温高压制备高级烃类(又称为费托反应)是煤间接液化技术之一,在第二次世界大战期间投入大规模生产,是替代石油、实施煤碳洁净高值利用的重要技术,在工业和学术界引起科研工作者的极大关注。众多费托催化剂中,Ru、Co、Fe基催化剂应用最为广泛。Ni基催化剂因为其C-C偶联效率低下,更趋向于催化生成低值的甲烷,Ni基催化剂又被称为甲烷化催化剂。鉴于费托反应的重要意义,发展新的清洁、绿色的新型能源路线,特别是在温和条件下提高Ni基催化剂高选择合成高附加值的高碳烷烃,依旧是一个挑战。

      相比传统高温高压的热催化转化过程,太阳能光催化技术具有室温常压深度反应、可直接利用太阳能作为光源来驱动反应等独特优势,作为一种理想的洁净能源生产和污染治理技术而备受瞩目。近期,中国科学院理化技术研究所超分子光化学研究团队研究员张铁锐课题组及合作者合成了部分NiO层修饰Ni的纳米结构,可以在低温常压下利用可见光驱动CO加氢制备高级烃类,C2+选择性高达60%,且催化稳定性优越。在题为Oxide-Modified Nickel Photocatalyst for the Production of Hydrocarbons in Visible Light的文章中,研究人员通过简单的煅烧-氢气还原方法,将水滑石载体可控还原为Ni/NiO纳米结构,成功实现了NiO纳米层部分锚定Ni纳米颗粒的调控。利用X射线精细结构衍射、原位X射线光电子能谱以及透射电子显微分析等手段原位跟踪了NiO/Ni纳米结构的生成过程,表面NiO层和Ni纳米颗粒之间丰富的界面,改变了NiO/Ni纳米结构的电子环境。该独特的结构实现了可见光下CO的活化,进一步促进了催化剂表面的C-C偶联,促进了可见光催化CO加氢制备高碳烃,且催化剂具有非常好的循环稳定性。没有界面结构的NiO和Ni纳米颗粒没有明显的高碳烃选择性。通过理论计算和实验结合的手段,进一步证实了具有丰富界面的NiO/Ni纳米结构,改变了CO加氢中间CH2*物种的吸附反应路径,进而反应更趋向于高级烃类的生成。催化剂合成方法简单,成本低廉,更重要的是,该催化过程采用低温常压等绿色低能耗工艺,提供了利用非贵金属太阳能驱动合成燃料化学品的可能性。

      相关研究工作得到了科技部国家重点基础研究计划、国家自然科学基金委优秀青年科学基金项目、青年基金、国家“万人计划”-青年拔尖人才支持计划、中国科学院前沿科学重大突破项目的大力支持。

      CO加氢高温高压制备高级烃类(又称为费托反应)是煤间接液化技术之一,在第二次世界大战期间投入大规模生产,是替代石油、实施煤碳洁净高值利用的重要技术,在工业和学术界引起科研工作者的极大关注。众多费托催化剂中,Ru、Co、Fe基催化剂应用最为广泛。Ni基催化剂因为其C-C偶联效率低下,更趋向于催化生成低值的甲烷,Ni基催化剂又被称为甲烷化催化剂。鉴于费托反应的重要意义,发展新的清洁、绿色的新型能源路线,特别是在温和条件下提高Ni基催化剂高选择合成高附加值的高碳烷烃,依旧是一个挑战。

      相比传统高温高压的热催化转化过程,太阳能光催化技术具有室温常压深度反应、可直接利用太阳能作为光源来驱动反应等独特优势,作为一种理想的洁净能源生产和污染治理技术而备受瞩目。近期,中国科学院理化技术研究所超分子光化学研究团队研究员张铁锐课题组及合作者合成了部分NiO层修饰Ni的纳米结构,可以在低温常压下利用可见光驱动CO加氢制备高级烃类,C2+选择性高达60%,且催化稳定性优越。在题为Oxide-Modified Nickel Photocatalyst for the Production of Hydrocarbons in Visible Light 的文章中,研究人员通过简单的煅烧-氢气还原方法,将水滑石载体可控还原为Ni/NiO纳米结构,成功实现了NiO纳米层部分锚定Ni纳米颗粒的调控。利用X射线精细结构衍射、原位X射线光电子能谱以及透射电子显微分析等手段原位跟踪了NiO/Ni纳米结构的生成过程,表面NiO层和Ni纳米颗粒之间丰富的界面,改变了NiO/Ni纳米结构的电子环境。该独特的结构实现了可见光下CO的活化,进一步促进了催化剂表面的C-C偶联,促进了可见光催化CO加氢制备高碳烃,且催化剂具有非常好的循环稳定性。没有界面结构的NiO和Ni纳米颗粒没有明显的高碳烃选择性。通过理论计算和实验结合的手段,进一步证实了具有丰富界面的NiO/Ni纳米结构,改变了CO加氢中间CH2*物种的吸附反应路径,进而反应更趋向于高级烃类的生成。催化剂合成方法简单,成本低廉,更重要的是,该催化过程采用低温常压等绿色低能耗工艺,提供了利用非贵金属太阳能驱动合成燃料化学品的可能性。

      相关研究结果发表在国际化学期刊《德国应用化学》(Angew. Chem. Int. Ed.)上,并被选为当期“热点(hot paper)”向读者重点推荐。该研究结果随后被英国皇家化学会Chemistry World 以New photocatalyst shows promise for fuel production 为题进行了亮点报道,著名光催化专家、西班牙瓦伦西亚理工大学教授Hermenegildo Garcia对该催化材料的成功研制给予了高度肯定。

      相关研究工作得到了科技部国家重点基础研究计划、国家自然科学基金委优秀青年科学基金项目、青年基金、国家“万人计划”-青年拔尖人才支持计划、中国科学院前沿科学重大突破项目的大力支持。

      广州地化所发现Cu-PBDEs复合污染下PBDEs的植物吸收及转运新机制